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C O N D U C T I O N  P R O B L E M S  
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The article considers a variational method of solving unsteady-state heat conduction problems. 

Conventional methods used for approximation of solutions, in particular, the finite-difference method, often 

prove ineffective for nonlinear unsteady-state heat conduction problems in which the thermophysical properties of 

the material or the heat sources depend on temperature. Calculations show that variational methods are promising 

for this class of problems. 

For error analysis in nonlinear variational problems, we will carry out the calculation of heating of an 

infinite cylinder of radius R by a radiative and convective heat flux: 

1 
~ q a ( R ,  x ) =  C ( T ~ - - T ~ ( R ,  "~)) + a c ( T m - - T ( R ,  "c)) (1) 
2aR 

at the medium temperature Tm= const and with the initial condition T(r, 0) = const. The thermal conductivity 

is assumed to depend on temperature: 2 =2(0) (O = T/TIn). 

The calculation will be done using the functional from [1 ]. Taking into account the Fourier heat conduction 

law q = -2~rTm2(0)0'r, the change of the function W in an element of unit length l = 1 will be found: 

l A.,.v = _ S .o, - g -  (r~ (.0.) 0,;) + r~. ('0') 0';":'] d," - -  
2aT~ 0 (2) 

- r~, O )  oe;Io~l a~ = O. 
J 

From the heat conduction equation 

1 
2aTm e (t~) = cprt~ 0 , (3) - -  -- ~ (r~ ( ,o)  .o,,.) = o 

we will find the first term in (2) and determine the functional for the conditions of problem (1) and (3) 

- - 2 a T ~  -- b( {~0 (cpO0~ + ~(~)Oi2)rdr--D.(O)tS:O[no}dT=O. (4) 

The approximation errors in variational heat conduction problems depend on the residuals in differential 

equation (3) and the boundary condition 

E1 (~) = 2nRTm (% (,~) - -  • (~) ;k~ (R, "Q). (5) 

These errors can be diminished if the solution is approximated using piecewise-smooth elements 

| (| expressing the approximate solution as a broken curve. The approximation errors at the discontinuity 

points of the gradients O'r should be minimized. 

In estimating the approximation errors, their effect can be considered to be a result of the action of fictitious 

heat sources on the boundary R and in the region 0 < r < R, including the conjugation points of the elements Oi. 
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Therefore,  an approximation using the functions O i is a solution of a physically meaningful problem with fictitious 

sources. Some fictitious sources can be estimated, because of which it is possible to specify the approximating 

functions and the error  minimization process is simplified [1 ]. The  effect of fictitious source functions can be 

included in variational functional (4). Moreover, the heat balance equation for these sources can be constructed. 

The approximating functions will be determined so that the net effect of all fictitious sources is minimal at 

the points at which the approximation is to be found. It should be borne in mind that the indicated errors exist 

with any approximation methods used. Evidently, by choosing steps along the coordinate i and in time j, it is 

possible not only to reduce these errors but also to compensate, in a certain way, for their mutual effect. 

Since trigonometric functions have good approximating properties [2, 3 ], the following piecewise-smooth 

elements will be used for large r: 

Old(r ,  T ) =  l - - ? c o s ( ~ t i . W R ) N j ( ~ ) ;  " OEC~; 
(6) 

? =  1 - - T ( r ,  0)/Tin; N(oo)-----0; ~ti. i = p j + i h .  

In order  to determine the form of the functions Nj(T), (6) will be substituted into Eq. (3). After integration of (3) 

with respect to r and z- we will find for a linear function ~t(| 

Nj (Fo) -- Dr exp (--q~j Fo)/(1 -f- vj exp (--q~i Fo)); Fo = aT/R 2. (7) 

Since functions (7) have been determined for the condition e(@) = 0, assumed in (3), with a particular 

choice of the coefficients Dj, Tj, and vj, they allow compensation of the mutual effect of the sources e(O) in the 

region 0 < r _< R. The coefficients Dj are assumed to be constant for every interval ~j+l - rj. In determining the 

coefficients Dj for large v, we will use a method used in mathematical  physics and assume that  the initial 

temperature distribution 1 - 7 can be expressed using the incomplete Fourier series in the class of functions 

cos(ur /R) ,  orthogonal with weight r [3 ]: 

n o  

1 - -  ? = 1 - -  "i' ~ Dj.~ cos (~j,,~r/R); �9 = 0. (8) 

It will be found that 

R R 
Dj.n .I r cos 2 (~j.,~r/R) dr = ( r cos (FL,~r/R) dr; (9) 

o "6 

4 [sin Fj -F (cos t~j - -  1)/~y] n = 1. (10) D j =  
9i + sin 2~tj + 0,5 (cos 2~j - -  1)/gj 

Functions (6) can be considered as elements of the series expansion of ~ with Fourier coefficients (10), 

assuming that the series terms decrease with time. Therefore,  it is assumed that the coefficients Dj, calculated with 

expression (10), allow the best minimization of the mean root square error with weight r. 

In what follows, use will be made of the dimensionless parameters 

�9 3 . 

X --- r/R; Fo = aoX/R2; Blra= CTmR]~.o, 

Bic -=-- acR/3,o; 3. o = ~, (r, 0); ao = ~o/Cp. 

Discontinuities of the gradient O'r at the conjugation points of elements (6) and (7) will be found as a result 

of the action of the fictitions sources 

Qi = 2nr~T,~q~, q~ = ~. (O~)((Oi)~ - -  (Oi+1)~). (11) 

The change of the function ~ ,  caused by source (11), will be 

A l l / ~ -  2 --2z~r~TmqiOt. (12) 
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We will find the change of tlJ in the region 0 < r < R by integrating over X in (4) with fixed Foj and summing 

I(O) for m intervals Xi+l-X i. Taking into account (5) and (12), the functional is found: 

1 R m--i 
I ( 0 ) =  )to (qoO( , Z o o ) +  X O,q,) - -  

i = I  
(t3) 

2 x~+~(~ 00;o )t(O) O'~')XdX O. - ., + = 
i = l  X i . )tO 

For the conditions I (Oj) = 0 and E l (| = 0, adopted in (13), the effects of the sources e and Qi are mutually 

compensated at the moment  Foj. Therefore,  functional (13) will also be used as an equation in determining unknown 

coefficients. The  function I(O) can also be evaluated for the subregion r i < r < R (i < m). 

With the condition I(O) = 0 included, the existence of an extremum of functional (13) in the solution O at 

some points will be checked by shifting the reference point of I(O) by ~1: 

I(O(R, Foj)) + ~x = 0 (14) 

and considering the thermodynamic conditions [1 ] 

Aq~ (O~) < 0 ; .  Aq,,. (Oh) > 0; Oa < 0 < O b (15) 

for approximations to 0 from below O a and from above Oh. The search for the extremum from the set of equations 

I'~, = 0, I'~o = 0, etc. is unreasonable,  since this conventional method requires numerical differentiation and the 

resultant equations can correspond to inflection points. 

The  approximations Oi, j will be determined in such a way that at times Foj fictitious heat source [5 ] is 

equal to the heat flux at the surface r = R clue to sources (3) and (11) with the opposite signs, and the balance 

equation will be constructed for the fictitious sources [1 ] 

l m X i + x  

~ A q ' ( O ) = E I ( O ) - - ~  S e(O)dX=O. (16) 
Tm i = 1  X i 

The quantity Aqs(Q) is a fictitious heat flux on the surface. In what follows, the coefficients from (16) will 

be determined with El (| = 0. In this case the effects of all sources (3) and (11) acting at the time Foj on the 

surface temperature  |  Foj) are mulually compensated. 

For evaluation of Aqs for the intervals Foj+l-Foj we will find from (3), (5), (11), and (16) af ter  integration 

with respect to Fo: 

l l F~ ,,-1 

2acpTmR z )to ~o~ i=1 
m X i + l  

- E l  (0  (X, Foj+l) - -  0 (X, Foj)) XdX = O. 
(17) 

When using approximations (6) and (7) for small times r, the number of steps j should be increased. 

Investigations of analytic solutions of some linear problems for 5mall T show that before the regular regime sets in, 

the maximum of the derivative 0 '  3 is displaced with time from the surface into the interior of the body. If the 

approximating functions include this displacement of (O'r)max, the number  of steps j can be decreased substantially. 

The following functions will be chosen as approximations for small T: 

O.~.j = t - -  ~, (1 - -  t~ (rl, z)); rl = R - -  r. (18) 

The  functions f2(rl,  z), which include the displacement of (O's)max into the interior of the cylinder, will 

be determined using the solution for a semi-infinite space at Bira = 0 and ~. = const [3 ]: 

[2 (rl, x) = erfc zx - -  exp z2 erfc z3; (19) 
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1"l 
Zl = 1~1 2 "V'----~OT ' Z2 = ~:~ (Hr l  + H~aoX); 

z3 = ~3 (zt -[- H -Vaoox); H = ae/Zo. 

The  coefficients ~Pl, ~P2, and ~P3, which are unity for a solution of the linear problem, are introduced to take 

into consideration the nonlinear conditions. In calculating erfc z, use will be made of three terms from the known 

asymptotic expansion [3 ] 

erfcz = 1 . l /~  z -----~- -t- ; z ~  1. 

Since the approximations Oi, j a re  chosen in the class of the functions Oid E C 2, with a definite selection 

of the coefficients and arbitrarily small variations of the solution, the residuals of Eqs. (3), (S), (13), (16), and 

(17) can approach zero as the number  of steps i --,~ and j - , ~ .  Under  these conditions the functions @i,j will tend 

to a solution of the problem, and this will be checked by estimating the approximations from below | and from 

above | to the solution 0 .  

After substitution of the arbitrary variations 

t = O - - t ~ ;  O E C  2 (20) 

into (4), it is easy to see that in the class of functions (20) neither the necessary condition 6I = 0 nor the sufficient 

condition 621 < 0 (or ~2I > 0) for the existence of an extremum of functional (14) in the solution 9 is satisfied. 

The sufficient condition can be satisfied in the case of some thermodynamically reasonable restrictions on the choice 

of approximating functions. In particular, if the fictitious sources e and El in (3) and (5) are chosen so that they 

increase the thermal nonequilibrium for all r and all the previous T, then with a prescribed heat t ransfer  law on the 

boundaries (5) and the initial condition |  0) = 1 -7 ,  the time to attain the specified temperature for the solution 

will be the smallest. Then,  the variational principle can be based on minimization of the fictitious source actions 

and implemented in a particular class of functions that satisfy the indicated choice of sources E 1 (O) and e (| [1 ]. 

If the variational problem has a solution, these functions can always exist, since according to the second law of 

thermodynamics in a closed system only processes that bring the system close to equilibrium can occur. 

Integration by parts in (4) and substitution of the solutions into functional (4) make it vanish: I(9) = 0. 

Consequently,  the existence of a functional extremum can be checked by determining its increment signs: AI(| 

= I (| Therefore ,  the sufficient conditions I (| < 0 and I (| < 0 for the existence of a maximum in functional 

(4) in the solution 9 will be verified by calculations, using approximations to the solution 9 from below and from 

above. The  existence of a maximum will be also determined with a more severe restriction on the choice of 

approximating functions, when the time of achieving a best approximation Ov will be minimal relative to the 

approximations from below and from above. 

We choose the functions Pal  (R, Fo) and Obl (R, Fo) satisfying the conditions 

Et  (0~0 ~ O; e (O,n) ~> O; q~ (@~1) > O; Aq~ (O~x) < O; (21) 

E x(Obl ) ~ 0 ;  ~(Obl ) ~ 0 ;  q~(Obl ) ~ 0 ;  hq ,~(@b0>0 ,  (22) 

and the initial condition O(r,  O) = 1 - Y in the interval (0, FOl). In view of the fact that for the solution O, which 

is unique from physical considerations, the conditions 

E l ( t $ ) = 0 ;  e ( ~ ) = 0 ;  q~( t~ )=0 ;  Aq~( t$ )=0 ,  (23) 

are satisfied, it is found that the solution 0 is inside the region restricted by conditions (21) and (22), where the 

residuals El, e, and Aqs change their signs. Then,  bearing in mind the signs at E 1 and Aqs in (17), (21), and 

(22), we will find that Pa l  and | are approximations to the solution from below and from above, respectively. 
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Conditions (21) and (22) for all F| in the interval (0, Fol) can be satisfied with a sufficiently good choice 

of the approximating func t ions  Oi, j. It is assumed that the functions Oi, j in (21) and (22) are determined so that 

integration of E1 and Aqm in (5) and (17) with respect to r between 0 and Fol results in fulfillment of the conditions 

Aqs < 0 and Aqsm(O) < 0 in the interval (0, FOl). Then  on the surface r = R the heat balance for fictitious fluxes 

(16) will be negative at the time Fol. Since the approximations Oi, j differ from the solution 0 only by the presence 

of the fictitious sources El ,  qi, and e, in accordance with the energy conservation law | will approximate 0 from 

below. In a similar way it will be found that when reciprocal inequalities in (22) are fulfilled, Obl will approximate 

0 from above. In accordance with this reasoning, the approximation Oa2 to Oal from below and the approximation 

| to | from above will be found for the subsequent time interval FOj+l-FOj. If it is necessary to determine the 

errors at the points r i inside the region 0 < r i < R, expressions (3), (16), and (17) are written for each subregion 

0 < ri and r i < R [1 ]. It is assumed that the approximating functions Oi, j will result in arbitrari ly small residuals 

El,  qi, and e, which will be verified in the computations. 

At large Fo, F| 3 < F| < o| and |  Fo) = 0.9900 the functions @a and O b witl be chosen so that they 

satisfy inequalities (21) and (22). With relations (23) in view, it will be found that the domain of definition of | 

restricted by constraints  (21) and (22), contains solutions of Eqs. (3) and (5) for various initial conditions, 

including the condition O(r, 0) = 1 - 7. With the signs at E~ and Aqs in (21) and (22) taken into consideration, the 

solutions Oa and Ob will approximate the final value 0(r,  ~)  = 1 either only at negative or only at positive fictitious 

fluxes Aqs, i.e., e i ther  more slowly or more quickly than the solution 9 will. Therefore ,  | and  Ob will be 

approximations to the solution 0 from below or from above, respectively. In a similar way | and | will be 

found for all previous Foj. 

In order  to determine why these approximations can be realized using functions (6) and (7), it will be 

assumed that the solution 0 can be expressed by a series for r in the full orthonormal set of functions (6) with 

coefficients (7). It is assumed that the coefficients Nj(e) decrease with time and that at large F| only one term in 

series (8) remains. In this case the solution 0 for O(r, 0) = 1 - Y and the solution O 1 of another  problem with the 

initial condition 01 (r, 0) = 1 - 7 D c o s ~ r / R ) ,  corresponding to one term in (8), will coincide at large F| within the 

remainder  of the series, which is usually the case in analytical solutions [3 ]. 

At present there are no theoretically substantiated methods for error estimation in nonlinear unsteady-state  

problems. In the case of piecewise-difference approximations the results are sometimes estimated by considering 

lbe conditioo Ok+ 1 (ri, Foj) - Ok(ri, Foj) < ~2, which is not theoretically successive, for Iwo subsequent iterations. 

It is assumed here  that as the number of steps increases, the approximations can tend to the solution, just as in 

linear problems. As follows from the above analysis, in grid methods the residuals in Eqs. (3) and (5) are uncon- 

trollable sources that, when accumulating, can disturb the balance equations. When results in nonlinear problems 

are estimated using the above condition, approximations can tend to the solution of another  problem with fictitious 

sources and this can bring about very serious computation errors that cannot be estimated [4 ]. 

The  unknown coefficients in (6), (7), and (19) will be found from Eqs. (5), (13), (16), and (17). In this 

case the calculations can be done easily, using the law of variation of the coefficient }ti, j adopted in (7), followed 

by determination of the computation error  6 = (| - |  The coefficients pj are found from boundary  condition 

(5) for the conjugation points of the e l emen t s  Oi, j. If inside the elements the approximations do not satisfy Eq. (5), 

then with condition (16) the source E~ on the surface r = R will compensate for the action of all the sources inside 

the cylinder. The  coefficients ~oj are found from (16) and ~i+l,j a re  determined from the element conjugation 
condition 

~)(ri, Foj, ~i+l,J, q)i+l,])= O(ri, F| i, ~i,.i, f~i.J). 

The values of vj+ 1 are found with the aid of functional (13). The functional increment AI = I(vk) -- l(vj) is 

calculated here  and,  using the linear interpolation I(vk)/Al(v ) = (v k -- v~+ ])/(Vk -- vj), the coefficient vj+l will be 
determined and the condition I I (0 )  I < 1.104 is verified for it. 

The  coefficient/zi+j, j+l inside the domain is found in accordance with the law of variation of ffi,j taken in 

(7). The coefficient Pj+t can be evaluated from the condition of conjugation of | pj) and O(ri, Pj+I) in time. 

These  approximations will be expressed in terms of the coefficients for the two iterations j and j+l:  
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TABLE 1. Relative Temperature in an Infinite Cylinder Heated under Nonlinear Heat Transfer Conditions 

Bira = 0.2; Bi c = 0.25; 1- 7 -- 0.3;/3 = 2 

Fo 

e(o) 
O(O.SR) 
O(R) 

0.2 

0.4070 

0.4312 

0.4905 t 

0.5 

0.6263 

0.6406 

0.6791 

1.0 

0.8635 

0.8691 

0.8847 

1.5 

0.9528 

0.9548 

0.9606 

2.0 

0.9831 

0.9838 

0.9859 

Bira = 0.5; Bic= 0.15; 1 -7  = 0.2;/3 = 2 

Fo 

O(0) 

O (0.5R) 

O(R) 

0.2 

0.4157 

0.4538 

0.5418 

0.5 

0.8033 

0.8174 

0.8543 

1.0 

0.9738 

0.9759 

0.9813 

Bira = 0.5 and Bi c = 0.15 

1.5 

0.9960 

0.9964 

0.9972 

2.0 

0.9994 

0.9994 

0.9996 

/z 

~o 

h 

0.6524 

2.1525 

0.4940 

0.0740 

0.7293 

3.0660 

0.1713 

0.0341 

0.7693 

3.5705 

0.0143 

0.0237 

0.7744 

3.6417 

0 

0.0230 

0.7752 

3.6505 

0 

0.0230 

O(rl,  Foi, qb+~, hi+~, Ixi+~)--@(r~, Foj, qb, hi, ~ ) .  

We will find •j+l, using O(ri, ~j) ,  evaluated in the previous iteration j. 
In order to find the initial ~o and h at large Fo, we will take O(r, oo) = 1 as the reference point for 

temperature and calculate the coefficients ~o and h for the approximation O(R, Fo) = 0.9995 at v = 0. The initial 

ff will be found from the characteristic equation p tan ff = 4Bira +Bic, which follows from boundary condition (5) 

a t F o - - o o  [1]. 
Some results for 2 calculated as a function of temperature/l(O) = ;t(O(r, 0)){I +/3 [O(r, Fo) - |  0) ]0.4} 

are given in Table 1. The computation error of the estimates given in the table does not exceed I%.  The 

computations have shown that a solution of a variational nonlinear problem can be approximated by choosing the 

approximating functions so that they allow minimization of the residuals in Eqs. (13) and (16), obtained from 

analysis of the problem with fictitious heat sources. The coefficients obtained from expressions (13) and (16), which 

are integral balances, correspond to the conditions where the effects of the fictitious sources e(O) and El(O) 
compensate for each other at some points and, on the average, over the integration region, and the computation 

error is minimized. 
The error of the temperature calculated using variational functional (13), which corresponds to nonlinear 

heat conduction equation (3) and nonlinear boundary heat transfer law (1), can be decreased by an order of 

magnitude or more compared with that of finite-difference approximations. In finite-difference approximations one 

can only replace the functions 2(0)  at the nodes by numerical values of 2 (0)  averaged in a certain arbitrary way. 

For such approximations the temperatures Oi, j can  change by 50 to 100% just due to the method used for averaging 

;t (O) [4 ]. In this case substantial variations of Oi, j inconsistent with the physical meaning of the problem can often 

occur over the spatial region. The variational principle just described practically excludes the effects of this kind 

of errors, since the function 2 (0), consistent with the physical law, is taken into consideration inside every element 

Oi, j and at its boundaries, which improves the solution approximation substantially. In addition, the proposed 

method for estimating the error from the heat balance equations for fictitious sources (17) makes it possible to 

determine both the order of magnitude of the error and its absolute value. 
Functional (13) and heat balance equation (16) should include the action of fictitious sources (11) and (12) 

to reduce the accumulation of residuals in the equations during iterations. Errors (11) and (12) can also be 
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eliminated by determining some coefficients from the condition of gradient equality at the conjugation points; 

however, this constraint restricts the class of approximating functions, because of which it may be required that i 

and j be increased. For the above problem, computation of sources (11) and (12) in (13) and (16) will provide an 

additional compensation for the residuals e. 

Minimization of the computation errors depends largely on the choice of approximating functions, which is 

known to be typical of variational methods. Piecewise-smooth elements (6), (7), and (18) form a sufficiently wide 

class of approximating functions for a solution of nonlinear heat conduction problems and give approximations with 

a small number  of steps i and j. The  use of equations (17), which define the heat balance for fictitious sources, in 

variational computations improves minimization of the residuals e(O) and E1 (| The  condition O E  C 2 in (6) is 

also satisfied by cubic splines, but they approximate the solution of problem (3) and (5) much worse than functions 

(6), (7), and (18). Cubic splines can be useful in solving linear problems for which there exist proofs of convergence 

of the approximations to the solution. 

If the number  of coefficients and equations for determining these coefficients should be increased, the 

computation can also be done for intermediate Fo in the interval Foj+l - Foj. In the computation it is also useful to 

control the residuals of the equations inside the intervals Foj+l - Foj, especially with a small number  of steps. In 

order  to reduce the machine time for determination of the initial coefficients, if necessary, use could be made of 

multidimensional optimization methods or analytic solutions of linear problems with conditions as close as possible 

to those of the problem to be solved. 

It should be noted that for functionals that can be obtained with irreversible thermodynamic methods [5 ] 

investigation of a sufficient condition for the existence of an extremum has failed. The search for an extremum just 

from a necessary condition fails because of inflection points, which is confirmed by computations. Values of the 

functional are always determined with severe restrictions, in particular, with linear conditions on the boundary  and 

also in the absence of particular variations of q and O'r and all variations of the boundary conditions. Since without 

variations of (20) the functions O to be determined can only be solutions, the extrema of these functionals can 

occur in the solution 0 only when the corresponding values of 0 are substituted as nonvaried quantities. The solution 

of the problem is usually unknown and for the approximations O and all r and T there exist residuals E1 and e that 

are arbi t rary variations of the solution. Therefore,  functionals with the above restrictions could only be of theoretical 

interest since substitution of the possible approximations into this functional violates the energy conservation law. 

Evidently, an ext remum of this functional can only exist in a solution of another  problem with fictitious sources E 1 

and e. Computations confirm that minimization of these sources by a balance equation such as (16) is only possible 

if the energy conservation law is satisfied. 

Since the extrema of such functionals usually cannot be investigated, the functionals are only used as 

equations for determinat ion of the coefficients, and the meaning of the variational formulation is lost. These 

equations, which are, however, called variational, are often physically meaningless, which hinders the computation 

process. In this situation other  methods yield results more efficiently. Calculations with the use of a functional show 

that variational methods are effective if sufficient conditions for the existence of an extremum are found and 

arbi t rar i ly  small variations are investigated near  the extremal  points and if a theoretically reasonable  error  

estimation is possible. Under  these conditions verification of the existence of a variational functional extremum in 

the solution is a sufficiently effective means for checking the results. 

Since functional (13) takes into account nonlinear conditions by means of the substitution of the appropriate 

functions into it, in particular, the condition ~. = )~(O), the present calculation method can be used for solving 

problems  with s t rong  non l i nea r i t y ,  for  which f i n i t e -d i f f e r ence  approx imat ions  do not  provide sufficient 

computational accuracy, for example, in the case of an active powerful instantaneous source, asymmetrical nonlinear 

problems, etc. The  present analysis shows that this variational principle, based on minimization of the action of 

fictitious sources, can be used in constructing functionals for other problems of mathematical physics, if their 

formulations use some conservation laws. The estimation of the approximation to the solution from below and from 

above, adopted here,  can also be done for nonvariational methods in approximation by approximating functions in 
the class O E  C 2. 
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N O T A T I O N  

t? = T/TIn, temperature; ~ ,  thermodynamic function; T, absolute temperature; T m, medium temperature; 
r, ri, coordinates; R, cylinder radius; r, time; q, heat flux; 2, thermal conductivity; p, density; c, heat capcity; O, 

approximating function; @i, piecewise-smooth elements of the function O; 1 - 7, relative initial temperature; a, 

thermal diffusivity; C, emissivity; I, functional; f, arbitrarily small variations of the problem solution 9; a c, 

convective heat transfer coefficient;/x, ~o, v, h, D, ~f, r ,  coefficients; Fo, Fourier number (dimensionless time); Bic, 

Biot number; Bira, radiative Biot number; i, coordinate step; j, time step; O a and Oh, approximations to the solution 
from below and from above; 6I(O), first functional variation; 62I(O), second functional variation; 6, error; 2o = 
;t(r, 0), initial thermal conductivity; a e = qa/(Tm - T(R, T)), net heat transfer coefficient. 
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